1) Find all the eigenspaces of the matrix below (15 points)

$$\begin{vmatrix} -1 & -3 & 3 \\ 0 & -1 & 0 \\ 0 & -3 & 2 \end{vmatrix}$$
$$|xI - A| = \begin{vmatrix} x+1 & 3 & -3 \\ 0 & x+1 & 0 \\ 0 & 3 & x-2 \end{vmatrix} = (x+1)\begin{vmatrix} x+1 & 0 \\ 3 & x-2 \end{vmatrix} = (x+1)(x+1)(x-2)$$

For $\lambda = -1$ we get:

$$\begin{bmatrix} -1+1 & 3 & -3 \\ 0 & -1+1 & 0 \\ 0 & 3 & -1-2 \end{bmatrix} = \begin{bmatrix} 0 & 3 & -3 \\ 0 & 0 & 0 \\ 0 & 3 & -3 \end{bmatrix} \sim_R \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has eigenspace $span \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$.

For $\lambda = 2$ we get:

$$\begin{bmatrix} 2+1 & 3 & -3 \\ 0 & 2+1 & 0 \\ 0 & 3 & 2-2 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -3 \\ 0 & 3 & 0 \\ 0 & 3 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has eigenspace $span\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$.

2) Find the diagonalization of the matrix from the previous problem. (5 points) (If you couldn't solve the previous problem, make up an answer to answer this problem)

$$\begin{bmatrix} -1 & -3 & 3 \\ 0 & -1 & 0 \\ 0 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}^{-1}$$

3) Given the basis below, find an orthogonal basis for the same vector space. (10 points)

$$\begin{cases} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4\\1 \end{bmatrix} \end{cases}$$

The first vector is $\begin{bmatrix} 1\\1\\0\\0\\4 \end{bmatrix} = proj_{\begin{bmatrix} 1\\1\\0\\0\\1\\0\\1 \end{bmatrix}} \begin{pmatrix} \begin{bmatrix} 2\\3\\4\\4\\1 \end{pmatrix} \end{pmatrix}$
$$proj_{\begin{bmatrix} 1\\1\\0\\1\\0\\1\\0\\1 \end{bmatrix}} \begin{pmatrix} \begin{bmatrix} 2\\3\\4\\4\\1 \end{pmatrix} = \frac{2+3}{2} \begin{bmatrix} 1\\1\\0\\0\\1\\0\\1 \end{bmatrix} = \begin{bmatrix} 2.5\\2.5\\0\\1\\0\\1\\0\\1 \end{bmatrix}$$

The orthogonal basis is:

([1]		[-0.5])
}	1	,	0.5	ł
(4)

4) Answer the following questions. (3 points each)

A) Let A be a 5×5 with eigenvalues 0, 0, 1, 2, 3. What is the maximum rank of A?

4

B) Let A be a 3×5 matrix whose nullity is 4. When row reduced, how many rows of zeroes are there?

2

C) Consider a system of 4 equations and 4 variables that has a unique solution. When row reduced, how many pivots does the corresponding matrix have?

4

D) Let A be a 6×6 matrix whose corresponding linear transformation T is onto. Is T one-to-one?

Yes

A) Let A be a 3×3 matrix whose corresponding linear transformation T is not one-to-one. What is the determinant of A?

0

5) Given the basis and vector below, find a formula for the vector \vec{x} in standard coordinates. (10 points) $B = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix} \} : \begin{bmatrix} \vec{x} \end{bmatrix}_{P} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$

$$\mathcal{S} = \{\lfloor_2 \rfloor, \lfloor_2 \rfloor\}; \lfloor x \rfloor_B = \lfloor_3 \rfloor_B$$

$$[\vec{x}]_S = 5\begin{bmatrix}1\\2\end{bmatrix} + 3\begin{bmatrix}4\\2\end{bmatrix}$$

6) Find a formula for for [T] given the facts below. (5 points)

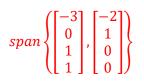
 $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}; \ T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}7\\8\end{bmatrix}$

[T] =	[5	7]	<u>۲</u> 1	3] ⁻¹				
[I] =	l6	8]	l_2	4				

(Set up the diagram to make this easy, don't try to memorize a formula)

7) Find the null space of the matrix below. (10 points)

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$



8) Reduce the matrix below to reduced echelon form. (10 points)

[2	0	0	0	01
2 0 0	0	1	2	0 6 1
LO	1	3	4	1

[2	0	0	0	0]	[1	0	0	0	0]	[1	0	0	0	0]	[1	0	0	0	0]
0	0	1	2	$6 \sim_{I}$	R 0	0	1	2	$6 \sim_R$	0	1	3	4	1 ~	$r_R 0$	1	0	-2	-17
lo	1	3	4	1	lo	1	3	4	1	lo	0	1	2	6	lo	0	1	2	$\begin{bmatrix} 0\\ -17\\ 6 \end{bmatrix}$

9) Let A be a 5×5 matrix with eigenvalues 0, 1, 2, 3, 4. Is A is diagonalizable? (5 points)

Yes

10) Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
 and $f(x) = x^2 + 5$. Find $f(A)$. (5 points)

 $f(A) = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}^2 + 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 0 & 9 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 9 & 5 \\ 0 & 14 \end{bmatrix}$

11) Find the product below. (5 points)

$\begin{bmatrix} -1\\0\\0\\0\\0\end{bmatrix}$	0 1 0 0 0	0 0 1 0 0	0 0 0 1 0	$\begin{bmatrix} 0\\0\\0\\0\\1\end{bmatrix}$	$\begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$	0 1 0 0 0	0 0 1 0 0	0 0 2 1 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $	2 1 4 5 6	2 3 1 5 6	2 3 4 1 6	2 3 4 5 1	
				-1 3 14 5 6	-2 1 14 5 6	2 ·	-2 3 11 5 6	-2 3 6 1 6	$\begin{array}{c} -2\\ 3\\ 14\\ 5\\ 1\end{array}$					

12) Find the inverse of the matrix below. (5 points)

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 & 1 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & \frac{1}{4} & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & \frac{1}{4} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & \frac{1}{4} & 0 \end{bmatrix}$$