Name \qquad

1) Find all the eigenspaces of the matrix below (15 points)

$$
\left.\begin{aligned}
& \left.\left.|x I-A|=\left|\begin{array}{ccc}
x+1 & 3 & -3 \\
0 & x+1 & 0 \\
0 & 3 & x-2
\end{array}\right|=(x+1) \right\rvert\, \begin{array}{ccc}
-1 & -3 & 3 \\
0 & -1 & 0 \\
0 & -3 & 2
\end{array}\right] \\
& 3
\end{aligned} \quad x-2 \right\rvert\,=(x+1)(x+1)(x-2)
$$

For $\lambda=-1$ we get:

$$
\left[\begin{array}{ccc}
-1+1 & 3 & -3 \\
0 & -1+1 & 0 \\
0 & 3 & -1-2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 3 & -3 \\
0 & 0 & 0 \\
0 & 3 & -3
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This has eigenspace $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.

For $\lambda=2$ we get:

$$
\left[\begin{array}{ccc}
2+1 & 3 & -3 \\
0 & 2+1 & 0 \\
0 & 3 & 2-2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 3 & -3 \\
0 & 3 & 0 \\
0 & 3 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This has eigenspace span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
2) Find the diagonalizaion of the matrix from the previous problem. (5 points)
(If you couldn't solve the previous problem, make up an answer to answer this problem)

$$
\left[\begin{array}{ccc}
-1 & -3 & 3 \\
0 & -1 & 0 \\
0 & -3 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]^{-1}
$$

3) Given the basis below, find an orthogonal basis for the same vector space. (10 points)

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right\}
$$

The first vector is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
The second vector is $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]-\operatorname{proj}_{[11}\left(\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right)$

$$
\begin{gathered}
\operatorname{proj}_{[1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left(\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right)=\frac{2+3}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2.5 \\
2.5 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]-\left[\begin{array}{c}
2.5 \\
2.5 \\
0
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
0.5 \\
4
\end{array}\right]}
\end{gathered}
$$

The orthogonal basis is:

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-0.5 \\
0.5 \\
4
\end{array}\right]\right\}
$$

4) Answer the following questions. (3 points each)
A) Let A be a 5×5 with eigenvalues $0,0,1,2,3$. What is the maximum rank of A ?

4
B) Let A be a 3×5 matrix whose nullity is 4 . When row reduced, how many rows of zeroes are there?

2
C) Consider a system of 4 equations and 4 variables that has a unique solution. When row reduced, how many pivots does the corresponding matrix have?

4
D) Let A be a 6×6 matrix whose corresponding linear transformation T is onto. Is T one-to-one?

Yes
A) Let A be a 3×3 matrix whose corresponding linear transformation T is not one-to-one. What is the determinant of A ?

0
5) Given the basis and vector below, find a formula for the vector \vec{x} in standard coordinates. (10 points)

$$
\begin{gathered}
B=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right\} ;[\vec{x}]_{B}=\left[\begin{array}{l}
5 \\
3
\end{array}\right]_{B} \\
{[\vec{x}]_{S}=5\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3\left[\begin{array}{l}
4 \\
2
\end{array}\right]}
\end{gathered}
$$

6) Find a formula for for [T] given the facts below. (5 points)

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
6
\end{array}\right] ; T\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)=\left[\begin{array}{l}
7 \\
8
\end{array}\right] \\
{[T]=\left[\begin{array}{ll}
5 & 7 \\
6 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]^{-1}}
\end{gathered}
$$

(Set up the diagram to make this easy, don't try to memorize a formula)
7) Find the null space of the matrix below. (10 points)
$\left[\begin{array}{cccc}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1\end{array}\right]$
$\operatorname{span}\left\{\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$
8) Reduce the matrix below to reduced echelon form. (10 points)

$$
\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 6 \\
0 & 1 & 3 & 4 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 6 \\
0 & 1 & 3 & 4 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 6 \\
0 & 1 & 3 & 4 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 3 & 4 & 1 \\
0 & 0 & 1 & 2 & 6
\end{array}\right] \sim_{R}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & -17 \\
0 & 0 & 1 & 2 & 6
\end{array}\right]
$$

9) Let A be a 5×5 matrix with eigenvalues $0,1,2,3,4$. Is A is diagonalizable? (5 points) Yes
10) Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ and $f(x)=x^{2}+5$. Find $f(A)$. (5 points)

$$
f(A)=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]^{2}+5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 5 \\
0 & 9
\end{array}\right]+\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{cc}
9 & 5 \\
0 & 14
\end{array}\right]
$$

11) Find the product below. (5 points)

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 2 \\
3 & 1 & 3 & 3 & 3 \\
4 & 4 & 1 & 4 & 4 \\
5 & 5 & 5 & 1 & 5 \\
6 & 6 & 6 & 6 & 1
\end{array}\right]} \\
\\
\end{array} \begin{array}{ccccc}
-1 & -2 & -2 & -2 & -2 \\
3 & 1 & 3 & 3 & 3 \\
14 & 14 & 11 & 6 & 14 \\
5 & 5 & 5 & 1 & 5 \\
6 & 6 & 6 & 6 & 1
\end{array}\right]-
$$

12) Find the inverse of the matrix below. (5 points)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 4 \\
0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim_{R}\left[\begin{array}{llllll}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 4 & 0 & 1 & 0
\end{array}\right] \sim_{R}\left[\begin{array}{llllll}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & \frac{1}{4} & 0
\end{array}\right] \sim_{R}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & \frac{1}{4} & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 4 \\
0 & 1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 1 \\
0 & \frac{1}{4} & 0
\end{array}\right]}
\end{aligned}
$$

